ACS Medicinal Chemistry Letters

Wnt/ β -Catenin Signaling Pathway Inhibitors: A Promising Cancer Therapy

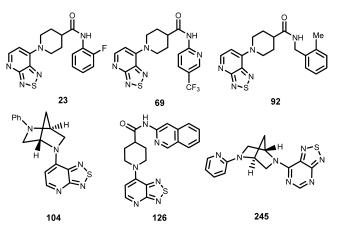
Ahmed F. Abdel-Magid*

Therachem Research Medilab (India) Pvt. Ltd., Jaipur, India

Title:	Azaheterobicyclic Compounds			
Patent Application Number:	WO 2014/086453 Al	Publication Date:	12 June 2014	
Priority Application:	EP 12008195.5	Priority Date:	7 December 2012	
Inventors:	Schiemann, K.; Stieber, F.; Esdar, C.			
Assignee Company:	Merck Patent GMBH, Frankfurter Strasse 250, 64293 Darmstadt, DE			
	Cancer Research Technology Ltd.; Angel Building, 407 St. John Street, London ECl V 4AD, U.K.			
Disease Area:	Inflammatory or hyperproliferative diseases, such as cancer	Biological Target:	Wnt pathway inhibitors	
Summary:	The invention in this patent application relates to novel substituted	azaheterobicyclic compound	ds, which are Wnt pathway inhibitors	
	and may be useful in the treatment of inflammatory or hyperproliferative diseases such as cancer			
	Wnt proteins are a large family of cysteine-rich secreted ligands that bind to a receptor complex of the members of the Frizzled (Fz)			
	family proteins. The Wnt signaling activates three different pathways: the canonical Wnt/ eta -catenin cascade, the noncanonical			
	planar cell polarity pathway, and the Wnt/Ca^{2+} pathway. The canonical pathway is the most understood and most relevant to			
	cancer. The binding of the Wnt proteins to the Frizzled receptor allows eta -catenin, the key mediator of Wnt signaling, to			
	accumulate in the cytoplasm and then translocate into the nucleus. There, it regulates target gene expression in combination with			
	members of the DNA-binding T cell factor I lymphoid enhancer factor (TCFILEF) family. However, if the Wnt ligands are absent,			
	then eta -catenin is phosphorylated by a protein complex made of Axin, adenomatous polyposis coli (APC), glycogen synthase			
	kinase 3 β (GSK3 β), and casein kinase 1 (CK1). The phosphorylation marks β -catenin for destruction via ubiquitination and			
	degradation by the proteasome. The binding of Wnt to the Fz receptor inhibits the Axin-APC-GSK3J3 complex and stops the			
	phosphorylation of β -catenin. Several tumor types often contain over activated Wnt/ β -catenin signaling cascade. Some proteins of the pathway that are tumor suppressors can mutate and act as oncogenes. For example, the tumor suppressor APC is mutated in nearly 60% of all colon			
	cancers. Many colon cancers express mutated stabilized eta -cater	nin that cannot be phosphor	ylated. Also mutations of the tumor	
	suppressor Axin were detected in hepatocellular, lung, and colo	on cancers.		
	Therefore, inhibition of the Wnt/ β -catenin signaling pathway is a possible and promising therapeutic target for cancer treatment.			
	While there are some reported Wnt pathway inhibitors, there exists a significant unmet medical need to identify new, more efficient			
	Wnt pathway inhibitors.			
Important Compound Classes		Cyc ¹		

Important Compound Classes:

Formula (I)


 Received:
 July 2, 2014

 Published:
 July 09, 2014

Key Structures:

The inventors listed the structures of 300 examples of formula (I) including the following representative compounds:

Biological Assay: Biological Data: Cellular Assay for Wnt Pathway Activity

The IC₅₀ values were determined for the compounds of the invention and ranged from <0.05 to 5.0 μ M. The values for the above representative examples are listed in the following table:

Compound	IC ₅₀	IC ₅₀ Classification	
23	Е		
69	А	A: $IC_{50} < 0.05 \ \mu M$ B: $0.05 \ \mu M \le IC_{50} < 0.10 \ \mu M$ C: $0.10 \ \mu M \le IC_{50} < 0.50 \ \mu M$ D: $0.50 \ \mu M \le IC_{50} < 1.00 \ \mu M$	
92	В		
104	Α		
126	C	E: $1.00 \ \mu\text{M} \le \text{IC}_{50} < 5.00 \ \mu\text{M}$	
245	D	E. 1.00 μ M $\leq 10.50 \times 5.00 \mu$ M	

Recent Review Articles:

Guo, Y.; Xiao, L.; Sun, L.; Liu, F. Physiol. Res. 2012, 61(4), 337–346.

McQueen, P.; Ghaffar, S.; Guo, Y.; Rubin, E. M.; Zi, X.; Hoang, B. H. *Expert Rev. Anticancer Ther.* **2011**, *11*(8), 1223–1232. Elston, M. S.; Clifton-Bligh, R. J. Mol. Cell. Endocrinol. **2010**, *326*(1–2), 48–54. Macheda, M. L.; Stacker, S. A. Curr. Cancer Drug Targets **2008**, *8*(6), 454–465.

AUTHOR INFORMATION

Corresponding Author

*Address: 1383 Jasper Drive, Ambler, Pennsylvania 19002, United States. Tel: 215-913-7202. E-mail: afmagid@comcast.net.

Notes

The authors declare no competing financial interest.